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Abstract

The differential and integral isoconversional methods for evaluation the activation energy, described

in the first note of this series, were applied for:

a) simulated data for two successive reactions;

b) dehydration of calcium oxalate monohydrate.

It was shown that for these systems the activation energy depends on the conversion degree as well

as on the method of evaluation.
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Introduction

In the first note of this series [1] the differential and integral isoconversional methods

for the evaluation of the activation energy from non-isothermal data were critically

analyzed. It was shown that if the activation energy depends on the conversion de-

gree, the differential method (Friedman’s method) gives values of the activation en-

ergy, which differ from those obtained using an integral isoconversional method.

This statement is going to be verified for:

a) simulated data for two successive reactions;

b) dehydration of calcium oxalate monohydrate.

Simulated data for two successive reactions

Let us consider that solid compound A undergoes two successive decompositions:
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A B G( ) ( ) ( )s s g
k1

1 1 → +ν (I)

B C G( ) ( ) ( )s s g
k1

2 2 → +ν (II)

where B and C are solid compounds and G1 and G2 are gaseous products.

We assume that the rate constants, k1 and k2, are expressed by Arrhenius equa-

tion with the following activation parameters: E1=58.5 kJ mol–1; A1=9·102 s–1;

E2=125.4 kJ mol–1; A2=5·108 s–1 (the indexes 1 and 2 refer to the reaction I and reac-

tion II, respectively; E is the activation energy and A is the pre-exponential factor).

The kinetic analysis of this sequence of successive reactions for isothermal condi-

tions was performed in the note II from this series. For non-isothermal linear heating

with the rate β, the corresponding kinetic equations have the forms:
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where α1 and α2 are the values of the conversion degree for reactions I and II, respec-

tively.

The solution of the Eq. (1) can be written in the form:
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The integral in the right hand side of relation (3) cannot be expressed in analyti-

cal form. In order to obtain numeric approximations we used IMT (Iri , Moriguki and

Takasawa) rule [3]. The temperature range was comprised between T0=300 K and

T=800 K. The obtained results are in a very good agreement with those obtained by

using the values of temperature integral tabulated by Zsakó [4].

Once the function α1(T) was determined, the relation (2) can be written as the

following linear differential equation:
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The solution of this equation with a given initial condition can be expressed by

means of the variation of constants (Duhamel’s formula; see for example [5]). The re-

sulting formula involved two successive indefinite integrals, which cannot be ex-

pressed in a closed form and, consequently, is of little help in this case. On the other

hand, the application of direct integration methods for initial value problems of ordi-

nary differential equations (as Runge–Kutta methods) fails to give the solution due to

instability associated with the large values of the quantity A2/βexp(–E2/RT). In order

to overcome these difficulties we used the Rosenbrock’s generalization of the

Runge–Kutta scheme [6]. We have used also an automatic stepsize adjustment algo-
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rithm based on Kaps and Rentrop work [7]. The code written in FORTRAN was

based on fourth-order Rosenbrock formula. All the computations were performed in

double precision.
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Fig. 1 The DTG curve obtained for two successive reactions (β=1.00·10–2 K s–1)

Fig. 2 The DTG curve obtained for two successive reactions (β=1.00·10–1 K s–1)



Like in note II from this series, we will consider the particular case ν1M1=ν2M2,

where M1 is the molecular mass of the gaseous compound Gi. In this case the overall

degree of conversion, α, is given by: α=(α1+α2)/2.

TG curves were calculated for 25 heating rates with values in the range

2.50·10–3–3.33·10–1 K s–1. Through numeric differentiation of TG curves, the curves

DTG (dα/dT vs. T) were plotted. In such a way, it was shown that for 2.50·10–3≤ ≤β
1.67·10–2 K s–1 the DTG curves exhibit two distinct maxima corresponding to the two

reactions (Fig. 1) and for 3.75·10–2≤ ≤β 3.33·10–1 K s–1 the DTG curves exhibit a single

maximum (Fig. 2).

For 2.50·10–3≤ ≤β 1.67·10–2 K s–1, in order to evaluate the activation energy,

Kissinger’s method [8] was applied to the two DTG maxima. For the first maximum

E
K

( )1
=51.6±1.8 kJ mol–1 and for the second one E

K

( )2
=127.2±6.0 kJ mol–1. E

K

( )1
value is

close to E1 and E
K

( )2
value is close to E2. Thus, in this range of heating rates, the two re-

actions (I and II) in [2] are separated in the DTG curves.

For 3.75·10–2≤ ≤β 3.33·10–1 K s–1, reactions I and II are not separated in the DTG

curves. For this range of heating rates we shall analyze the consequences of express-

ing the reaction rate through relation (2) [1] in which E and A are the apparent activa-

tion parameters. Firstly, let us notice that the Kissinger [8] activation energy value

corresponding to the DTG maxima, EK=104.2±2.2 kJ mol–1, lies between E1 and E2.

The use of Kissinger’s method requires a good constancy of the conversion degree at

the top of the DTG peak [9]. As shown in Table 1, unlike the case of single reaction

(simulated for E=125.4 kJ mol–1; A=5·108 s–1 and f(α)=1–α, and 15 heating rates in

the range 4.17·10–3–3.67·10–1 K s–1), for two successive reactions an important varia-

tion of αmax when a relative wide range of heating rates was used, can be noticed. A

similar result was recently reported by Sbirrazzuoli et al. [10] who analyzed a com-

plex process consisting in two parallel reactions in the framework of the reaction or-
der model.

Table 1 Peak temperatures (Tmax) and values of the corresponding degree of conversion (αmax)
for various heating rates (β) on simulated TG curves

Single reaction* Two successive reactions

β/K s–1 Tmax/K αmax β/K s–1 Tmax/K αmax

4.17·10–3 531.9 0.62 3.75·10–2 571.0 0.77

8.33·10–3 543.4 0.60 5.00·10–2 575.0 0.73

2.50·10–2 563.6 0.59 1.00·10–1 592.0 0.71

5.00·10–2 578.8 0.62 1.67·10–1 605.6 0.69

1.00·10–1 592.2 0.60 2.50·10–1 617.9 0.67

1.67·10–1 604.2 0.61 3.33·10–1 626.6 0.66

2.33·10–1 611.6 0.60

3.67·10–1 621.7 0.60

*Simulated data for: E =125.4 kJ mol–1; A=5·108 s–1; f(α)=1–α
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For 3.75·10–2≤ ≤β 3.33·10–1 K s–1 and 0.05≤ ≤α 0.80, values of EFR, EFWO, corrected

using Flynn’s procedure [1] (four iterations), EV and ELT were calculated (indexes FR,

FWO, V and LT refer to the isoconversional methods suggested by Friedman; Flynn,

Wall and Ozawa; Vyazovkin and Li and Tang, respectively; the corresponding rela-

tions which ground these methods are given and discussed in the note I from this se-

ries [1]). For all isoconversional straight lines, the correlation coefficients higher than

0.996 were obtained. As shown in Fig. 3, the values EFWO equal practically EV, but are

lower than EFR. The lowest values of the activation energy are obtained by Li and

Tang method. Figure 4 shows the dependence of the deviations of the activation en-

ergy obtained by integral methods with respect to EFR (e%), on the degree of conver-

sion. As one can see, e% exhibits a minimum (≈–22% for EFWO and EV; ≈–27% for

ELT) for α=0.50. For 0.25≤ ≤α 0.70, for all integral methods, |e%|>10%, i.e. the devia-

tions of EFWO, EV and ELT with respect EFR higher than the usually admitted errors on

activation energy evaluation.

From a comparison of the results shown in Fig. 3 with those shown in Fig. 3 –

note II [2], it turns out that at the analysis of isothermal data as well as the

non-isothermal ones, E values obtained with the help of a differential method are

higher than those obtained using an integral method. We will focus on E values ob-

tained through a differential method using isothermal as well as non-isothermal data.

One has to notice that Edif values, obtained from isothermal data (Fig. 3 – note II [2]),

differ from EFR, obtained from non-isothermal data. This result is probably due to the

bending of the isoconversional lines. In order to verify this last statement, EFR and Edif

J. Therm. Anal. Cal., 66, 2001

BUDRUGEAC et al.: ACTIVATION ENERGY FROM NON-ISOTHERMAL DATA 561

Fig. 3 Dependences E vs. α for simulated TG curves corresponding to two successive re-
actions (3.75·10–2 ≤ ≤β 3.33·10–1 K s–1) n – EFR; l – EFWO; s – EV; t – ELT



were evaluated for relative narrow temperature ranges (40 K). The obtained results

are shown in Table 2. For the same pair (α, ∆T), the values EFR and Edif are close. Be-

sides, for the α value which allowed to consider several temperature ranges, the in-

creasing or decreasing sense of change of activation energy with ∆T is the same for

EFR as well as for Edif. Even the non-realistic values of the apparent activation energy

(E>125.4 kJ mol–1) are obtained for EFR as well as for Edif, if the same values of the

pair (α, ∆T) are used.

Table 2 Dependence of EFR and Edif on the temperature range for which the straight lines
lnβ(dα/dt) vs. 1/T (non-isothermal data) and ln(dα/dt) vs. 1/T (isothermal data) were
plotted

∆T/K α EFR/kJ mol–1 Edif/kJ mol–1 E E

E

FR dif

dif

− ⋅100

473–513 0.05 59.9 58.8 1.9

473–513 0.10 60.6 59.4 2.0

473–513 0.20 62.2 60.9 2.1

513–553 0.20 65.2 65.0 0.3

473–513 0.30 64.1 64.4 –0.5

513–553 0.30 70.7 71.4 –1.0

553–593 0.30 80.1 77.8 3.0

473–513 0.40 71.0 72.9 –2.6

513–553 0.40 83.4 82.2 1.5

553–593 0.40 89.5 85.2 5.0

473–513 0.50 111.0 106.3 4.4

513–553 0.50 105.0 100.8 4.2

553–593 0.50 98.5 93.1 5.8

473–513 0.55 140.5 142.2 –1.2

513–553 0.55 120.2 112.7 6.7

553–593 0.55 103.9 97.3 6.8

513–553 0.60 127.6 123.7 3.1

553–593 0.60 109.8 101.4 8.3

513–553 0.65 130.8 130.6 0.2

553–593 0.65 113.4 105.5 7.5

513–553 0.70 126.5 131.3 –3.7

553–593 0.70 120.8 109.2 10.6

593–623 0.70 94.9 88.6 7.1

∆T – temperature range for which the isoconversional straight lines were plotted in isothermal and
non-isothermal conditions; α – degree of conversion; EFR – activation energy evaluated using
Friedman’s method; Edif – activation energy evaluated by help of the differential method from
isothermal data
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Fig. 4 The dependences e% vs. α for the data shown in Fig. 3
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Fig. 5 Dependencies E vs. α for the dehydration of calcium oxalate monohydrate
n – EFR; l – EFWO; s – EV; t – ELT



Dehydration of calcium oxalate monohydrate

Thermogravimetric data from [11] for heating rates of 1.645·10–2, 3.921·10–2,

8.313·10–2 and 1.596·10–1 K s–1were used.

The activation energy was evaluated by means of the three previously men-

tioned isoconversional methods. In order to apply Friedman’s method, dα/dt values

were evaluated numerically. The correct values of EFWO were calculated using the

first procedure suggested by Flynn [1] (three iterations). For all the isoconversional

straight lines, values of the correlation coefficient of the linear regression higher than

0.997 were obtained. As shown in Fig. 5, EFWO values equal practically EV values but

E values obtained with the help of integral methods are higher than those obtained us-

ing Friedman’s method. The activation energy decreases progressively with the de-

gree of conversion. This decrease was explained by Vyazovkin and Linert [12]

through the complex mechanism of decomposition of CaC2O4·H2O. According to

these authors, this process manifest itself kinetically as a change from a reversible de-

hydration to an irreversible one when the temperature is increased.

Figure 6 shows the dependence of the deviations of the activation energy values ob-

tained by integral methods with respect to EFR (e%), on the degree of conversion. As one
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Fig. 6 The dependencies e% vs. α for the data shown in Fig. 5
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can see, for all integral methods, e% increases with α. The deviations higher than 10%

are higher than the usually admitted error in the activation energy evaluation.

Conclusions

1. The differential and integral isoconversional methods to evaluate the activation en-

ergy from non-isothermal data were applied for:

• simulated data for two successive reactions;

• dehydration of calcium oxalate monohydrate.

2. For the two used data, the apparent activation energy values, no matter the applied

method, depend on the conversion degree.

3. The values of the apparent activation energy obtained by different methods, ap-

plied to the same non-isothermal data, are different.

4. The integral methods (Flynn–Wall–Ozawa, Vyazovkin, and Li and Tang methods)

are based on the integration of the rate equation for constant activation parameters.

That is the reason for we consider that for activation parameters dependent on con-

version degree, only the differential isoconversional method (Friedman’s method) is

suitable.

5. The use of the differential method, for isothermal and non-isothermal data corre-

sponding to two successive reactions, showed that, in both cases the activation energy

values depend on the temperature range. For the same temperature range and activa-

tion parameters used for simulation, a good agreement between the values of appar-

ent activation energy obtained from isothermal and non-isothermal data was put in

evidence.
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